Characterization of the Zn(II) Binding Properties of the Human Wilmsâ•Ž Tumor Suppressor Protein C-terminal Zinc Finger Peptide
نویسندگان
چکیده
Zinc finger proteins that bind Zn(II) using a Cys2His2 coordination motif within a ββα protein fold are the most abundant DNA binding transcription factor domains in eukaryotic systems. These classic zinc fingers are typically unfolded in the apo state and spontaneously fold into their functional ββα folds upon incorporation of Zn(II). These metal-induced protein folding events obscure the free energy cost of protein folding by coupling the protein folding and metal-ion binding thermodynamics. Herein, we determine the formation constant of a Cys2His2/ββα zinc finger domain, the C-terminal finger of the Wilms’ tumor suppressor protein (WT1-4), for the purposes of determining its free energy cost of protein folding. Measurements of individual conditional dissociation constants, Kd values, at pH values from 5 to 9 were determined using fluorescence spectroscopy by direct or competition titration. Potentiometric titrations of apo-WT1-4 followed by NMR spectroscopy provided the intrinsic pKa values of the Cys2His2 residues, and corresponding potentiometric titrations of Zn(II)−WT1-4 followed by fluorescence spectroscopy yielded the effective pKa eff values of the Cys2His2 ligands bound to Zn(II). The Kd, pKa, and pKa eff values were combined in a minimal, complete equilibrium model to yield the pH-independent formation constant value for Zn(II)−WT1-4, Kf ML value of 7.5 × 10 M−1, with a limiting Kd value of 133 fM. This shows that Zn(II) binding to the Cys2His2 site in WT1-4 provides at least −17.6 kcal/mol in driving force to fold the protein scaffold. A comparison of the conditional dissociation constants of Zn(II)−WT1-4 to those from the model peptide Zn(II)−GGG−Cys2His2 over the pH range 5.0 to 9.0 and a comparison of their pH-independent Kf ML values demonstrates that the free energy cost of protein folding in WT1-4 is less than +2.1 kcal/mol. These results validate our GGG model system for determining the cost of protein folding in natural zinc finger proteins and support the conclusion that the cost of protein folding in most zinc finger proteins is ≤+4.2 kcal/mol, a value that pales in comparison to the free energy contribution of Zn(II) binding, −17.6 kcal/mol.
منابع مشابه
Characterization of the Zn(II) Binding Properties of the Human Wilms’ Tumor Suppressor Protein C-terminal Zinc Finger Peptide
Zinc finger proteins that bind Zn(II) using a Cys2His2 coordination motif within a ββα protein fold are the most abundant DNA binding transcription factor domains in eukaryotic systems. These classic zinc fingers are typically unfolded in the apo state and spontaneously fold into their functional ββα folds upon incorporation of Zn(II). These metal-induced protein folding events obscure the free...
متن کاملhZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer.
We previously reported the identification of mZac, a novel mouse zinc finger protein that shared with p53 the ability to regulate concomitantly apoptosis and cell cycle progression. We describe here the isolation, chromosomal localization, and functional in vitro characterization of its human homolog. hZAC is a widely expressed zinc finger protein that reveals transactivation and DNA-binding ac...
متن کاملSynthesis of Zinc (II) Oxide Wurtzite Nano Crystals Via Zn (II) Minoxidil Nanocomposite As a New Precoursur
The study describes the synthesis and characterization of zinc(II) minoxidil nanocomposite (1). The reaction between zinc(II) acetate, minoxidil, {C9H15N5O=minoxidil=(2,4-diamino-6-piperidine-1-yl) pyrimidine N-oxide)} as a ligand and KI as bridging agent, in methanol at 60°C leads to the formation of nano-sized Zn(II) minoxidil nanocomposite, 1. Characterization of (1) was carried out by eleme...
متن کاملCu(II) and Zn(II) complexes with unsymmetrical tetradentate Schiff base ligands: Synthesis, spectral characterization, antimicrobial assay and DNA binding property
The reaction of copper(II) chloride and zinc(II) chloride with N-(2-methylphenyl)-3-(1'-salicylaldehydene-2'-imine-ethane)-butanamide(H2L2a) or (MPSB), N-(2-methylphenyl)-3-(1'-(3'-methoxysalicylaldehydene-2'-imine-ethane)-butanamide (H2L2b) or (MPMSB) and N-(2-methylphenyl)-3-(1'-(2'-hydroxyacetylene-2'-imine-ethane)-butanamide (H2L2c) (MPHB) leads to the formation of a series of new complexes...
متن کاملSonochemical synthesis and characterization of nano-sized zinc(II) coordination complex as a precursor for the preparation of pure-phase zinc(II) oxide nanoparticles
In current study, nanoparticles and single crystals of a Zn(II) coordination complex, [Zn(dmph)I2](1), {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine)}, have been synthesized by the reaction of zinc(II) acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characte...
متن کامل